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The study presented is an investigation of the non-linear dynamics and stability
of simply supported, circular cylindrical shells containing inviscid incompressible
#uid #ow. Non-linearities due to large-amplitude shell motion are considered by
using the non-linear Donnell's shallow shell theory, with account taken of the e!ect
of viscous structural damping. Linear potential #ow theory is applied to describe
the #uid}structure interaction. The system is discretiszd by Galerkin's method, and
is investigated by using a model involving seven degrees of freedom, allowing for
travelling wave response of the shell and shell axisymmetric contraction. Two
di!erent boundary conditions are applied to the #uid #ow beyond the shell,
corresponding to: (i) in"nite ba%es (rigid extensions of the shell), and (ii) connection
with a #exible wall of in"nite extent in the longitudinal direction, permitting
solution by separation of variables; they give two di!erent kinds of dynamical
behaviour of the system, as a consequence of the fact that axisymmetric
contraction, responsible for the softening non-linear dynamical behaviour of shells,
is not allowed if the #uid #ow beyond the shell is constrained by rigid ba%es.
Results show that the system loses stability by divergence.

( 1999 Academic Press
1. INTRODUCTION

Several studies have been conducted todate on the dynamic stability of circular
cylindrical shells subjected to either internal or external axial #ow. Particularly
interesting, in the case of internal #ow, are the studies of PamKdoussis and Denise [1],
22-460X/99/340655#45 $30.00/0 ( 1999 Academic Press
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Weaver and Unny [2], Matsuzaki and Fung [3] and PamKdoussis et al. [4].
In all of this work, the analysis is linear, and #uid #ow is modelled by potential #ow
theory.

PamKdoussis and Denise [1] considered both clamped and cantilevered shells and
utilized a travelling-wave-type solution, nevertheless satisfying the pertinent
boundary conditions, along with a separation of variables method to solve the
boundary value problem for the #uid}structure interaction. Weaver and Unny [2],
on the other hand, investigated the linear stability of simply supported shells by
means of the Fourier transform method to solve the #uid}structure interaction. In
both references [1, 2], damping was neglected; however, it was included in the
analysis by Matsuzaki and Fung [3], who showed that post-divergence
coupled-mode #utter of the simply supported system is not possible. PamKdoussis
et al. [4] extended this study to shells in annular #ow, and for both internal and
annular #ow extended the analysis further to deal with a viscous #uid #ow [5].
Although viscous e!ects can be extremely important for annular #ows, it was
shown that for internal #ow they are much less so, which is of particular
importance in the present study where the #ow is assumed to be inviscid.

Non-linear #utter of #at and curved plates (&&panels''), e.g., see references
[6}10], and beams (pipes), e.g., see reference [11], has been studied extensively.
In contrast, non-linear studies of shells subjected to internal or external axial
#ow are few. The "rst one appears to be by Olson and Fung [12]. They
modelled simply supported shells using Donnell's non-linear shallow shell theory,
using a two-mode expansion without considering the companion mode (second
standing-wave mode, the orientation of which is at n/(2n) with respect to
the previous one, n being the number of nodal diameters). In their study, the
#uid #ow is external to the shell and supersonic, and it is modelled by using
linear piston theory. In subsequent studies, Evensen and Olson [13, 14] considered
also the companion mode, therefore employing a four-degree-of-freedom mode
expansion. This expansion allows the study of travelling-wave-mode #utter, where
nodal lines are travelling circumferentially around the shell; this phenomenon is
similar to travelling waves predicted and measured for large-amplitude forced
vibrations of shells [15}18]. However, similarly to Evensen's [15] expansion, these
expansions are not moment-free at the ends of the shell, as they should be for
classical simply supported shells, and the homogeneous solution for the stress
function is neglected. Evensen and Olson investigated periodic solutions by using
the harmonic balance method and solved the non-linear algebraic equations for
some special cases. Olsson [19] added to the problem the e!ect of a particular
temperature "eld.

Lakis and Laveau [20] studied the non-linear vibrations of anisotropic circular
cylindrical shells containing a #owing #uid by using a hybrid "nite element method.
In this study, Sanders' linear shell theory is used and the non-linearities retained are
due only to the #uid #ow, which is described by potential #ow theory; speci"cally,
the Bernoulli equation was expanded to second order and a linear boundary
condition was used to satisfy the impermeability condition at the #uid}shell
interface. Results show that this kind of #uid non-linearity can be neglected for all
the vibration amplitudes of physical signi"cance. This con"rms the Evensen and
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Olson [13, 14] "ndings. Again, this is particularly important to the present study,
where, although shell motions are described by non-linear shell theory, linear
potential #ow theory is retained for modelling the #uid motions.

Selmane and Lakis [21] considered the non-linear vibrations of open and closed
circular cylindrical shellss with #uid #ow by using a hybrid "nite element method.
In contrast to the previous study, the non-linear Sanders}Koiter shell theory
is used, so that structural non-linearities are taken into account, but the #uid}
structure boundary condition is still expressed by a linear relation. Results show
only the e!ect of vibration amplitude on vibration frequencies. It is found that
non-linearity produces either hardening or softening behaviour in open circular
cylindrical shells, depending on the circumferential wave number n, for both
quiescent and #owing #uid. This is di!erent to what has been found in other
theoretical and experimental studies on non-linear shell vibration, e.g., for closed
circular cylindrical shells, Evensen [15], Chen and Babcock [17], Gonc7 alves and
Batista [22], Ganapathi and Varadan [23] and Amabili et al. [18] in all of which
a softening-type non-linearity is predicted. Furthermore, studies available for open
circular cylindrical shell in vacuo also indicate a softening behaviour (see reference
[18] for other references). No results are presented by Selmane and Lakis [21] for
closed circular cylindrical shells with #owing #uid, and the response of a shell and
its stability are not investigated, nor are companion mode participation and the
e!ect of structural damping considered (actually only the backbone curve,
pertaining to free vibrations, is obtained).

A full literature review of work on the non-linear dynamics of shells in vacuo and
"lled with or surrounded by quiescent #uid has been given by Amabili et al. [18]
and will not be repeated here. One important conclusion reached in that study,
however, is the following. Since most analyses involve some kind of Galerkin-type
expansion, the choice of appropriate comparison functions is as always important,
but in the case of non-linear shell motions it is crucial; a linear modal base is the
simplest and best choice. Furthermore, in order to reduce the number of degrees of
freedom, it is important to use only the most signi"cant modes. Thus, in addition to
representing both the regular or &&driven'' asymmetric modes and the &&companion
modes'', it is important to also include axisymmetric modes. This is because it has
clearly been established that, for non-linear shell motions, the deformation of the
shell involves a small but important axisymmetric contraction of the circumference.
This is important in predicting the kind of softening behaviour that has been
observed in the experiments (e.g. see reference [17]).

The present study seems to be the "rst one on the non-linear dynamics and
stability of circular cylindrical shells containing #uid #ow. It is aimed at clarifying
several aspects of the dynamics and stability of simply supported shells subjected to
internal #ow that linear studies were unable to investigate. Linear potential #ow
theory is applied to describe the #uid}structure interaction; in fact, the amplitude of
shell displacements remains small enough for linear #uid mechanics to be adequate.
sClosed in the sense that the circumference is closed, in contrast to a shell with an open, incomplete
circular cross-section.
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In contrast, the non-linearities due to large amplitude shell motions are taken into
account by using Donnell's non-linear shallow shell theory. The e!ect of viscous
structural damping is retained in the present study. The system is discretized by
Galerkin's method, and is investigated by using a low-dimensional model involving
seven degrees of freedom, allowing for the travelling wave response around the
shell. Two di!erent sets of boundary conditions are applied to the #uid #ow beyond
the shell extremities, corresponding to (i) in"nite ba%es (rigid extensions of the
shell) and (ii) connection with a #exible wall of in"nite extent in the longitudinal
direction, permitting solution by separation of variables. They give two entirely
di!erent kinds of dynamical behaviour of the system, as a consequence of the fact
that axisymmetric contraction, responsible for the softening behaviour of shells,
is not possible if the #uid #ow beyond the shell is constrained by in"nite rigid
ba%es (since this hypothesis would imply an in"nite kinetic energy for the #uid).
Numerical results show that the system loses stability by divergence.

2. NON-LINEAR MODEL OF THE SHELL

In this study, attention is focused on both a "nite, simply supported, closed
circular cylindrical shell of length ¸, and an in"nitely long shell, periodically
supported. In the last case, the portion of the shell considered lies between two
supports, ¸ apart, while the e!ect of the part of the shell beyond this length is only
considered as a constraint; only modes that are antisymmetric with respect to each
support are considered in this case (lower frequency modes). A cylindrical co-
ordinate system (O; x, r, h) is chosen, with the origin O placed at the centre of one
end of the shell. The displacements of points in the middle surface of the shell are
denoted by u, v and w, in the axial, circumferential and radial direction respectively.
Using Donnell's shallow-shell non-linear theory, gives the equation of motion for
large amplitude transverse vibrations of a very thin, circular cylindrical shell as
[15, 17]

D+ 4w#chwR #ohwK"f!p#
1
R

L2F
Lx2

#A
L2F

R2Lh2

L2w
Lx2

!2
L2F

R LxLh
L2w

RLxLh
#

L2F
Lx2

L2w
R2Lh2B, (1)

where D"Eh3/[12(1!l2)] is the #exural rigidity, E is Young's modulus, l is
Poisson's ratio, h the shell thickness, R the mean shell radius, o the mass density of
the shell, c (kg/m3 s) the damping coe$cient, and f and p are the radial pressures
applied to the surface of the shell as a consequence of external forces and the
contained #owing #uid respectivelyt The radial de#ection w is positive inward,
sA few words to de"ne &&large'' are useful. In the context of shell theory, large amplitudes signify
amplitudes exceeding the shell thickness, or of several times the shell thickness, which in other
contexts may be still considered to be small.

tIn this paper, in the calculations presented in section 6, f"0 is taken throughout.
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wR "(Lw/Lt), w( "(L2w/Lt2) and F is the in-plane stress function; F is given by
[15, 17]
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In equations (1) and (2), the biharmonic operator is de"ned as + 4"
[L2/Lx2#L2/(R2Lh2)]2. These equations are based on Donnell's nonlinear
shallow-shell theory, so that the results are accurate only for modes of high
circumferential wavenumber n (n is the number of nodal diameters); speci"cally,
1/n2@1 must be satis"ed, so that n*5 is required in order to have fairly good
accuracy. Donnell's non-linear shallow-shell theory is obtained by neglecting the
in-plane inertia, transverse shear deformation and rotary inertia, so that it gives
accurate results only for very thin shells, i.e., h@R; the predominant non-linear
terms are retained but other secondary e!ects, such as the non-linearities in
curvature strains, have been neglected.

The forces per unit length in the axial and circumferential directions, as well as
the shear force, are given by [24, 25]
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The strain}displacement relations are [24, 25]
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The #exural deformation w is expanded by using the linear shell eigenmodes
as basis; in particular, the #exural response having n nodal diameters and m
longitudinal half-waves can be written as

w(x, h, t)"
N1

+
m/1
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m,n

(t) cos(nh)#B
m,n

(t) sin(nh)] sin(j
m

x)

#
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x), (7a)

where j
m
"mn/¸ and t is the time; A

m,n
(t), B

m,n
(t) and A

m,0
(t) are unknown

functions of t. Equation (7a) was obtained by supposing that the non-linear
interaction among linear modes of the chosen basis involves only the asymmetric
modes (n'0) having a given n value, and all the axisymmetric modes (n"0);
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therefore, only the non-linear interaction among asymmetric modes of di!erent n is
neglected. Axisymmetric modes play an important role in non-linear vibrations, as
pointed out in the Introduction, and the interaction between asymmetric modes of
the same n is fundamental in the investigation of stability in the case of a #owing
#uid. This is the reason why they are included in the present low-dimensional
model. In the following analysis, the sums in equation (7a) are truncated at N

1
"2

and N
2
"5. Axisymmetric modes having an even m value can be eliminated in the

expansion, because they do not contribute to shell contraction. In fact, they present
an integer number of longitudinal waves and therefore they have an average
de#ection equal to zero on the shell length. In other words, at any instant along
the shell there is a number m/2 of half-waves moving inwards and m/2 moving
outwards, giving zero average contraction (in case of vibration considering only the
asymmetric mode with m"1; axisymmetric modes having an even m value can
be eliminated for symmetry reasons). Speci"cally, the following mode expansion
is used:

w(x, h, t)"
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#
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x). (7b)

The mode expansion of equation (7b) may be considered as a more sophisticated
version of that used by Amabili et al. [18] where sums were truncated to N

1
"1

and N
2
"3, since only modes with m"1 were investigated in that study. Equation

(7b) satis"es the boundary conditions

w"0 and M
x
"!DM(L2w/Lx2)#l[L2w/(R2Lh2)]N"0 at x"0, ¸, (8)

where M
x

is the bending moment per unit length. The other boundary conditions
di!er for the simply supported shell of "nite length (case 1) and for the in"nitely
long, periodically supported shell with restrained axial displacement at the
supports (case 2). They are as follows:

Case 1: N
x
"0 at x "0, ¸ and v"0 at x"0, ¸, (9a)

Case 2: u"0 at x"0, ¸ and v"0 at x"0, ¸; (9b)

moreover, u, v and w must be continuous in h. Case 1 corresponds to the classical
simply supported shell. The conditions imposed in case 2 are well justi"ed by
the reciprocal constraint between the part of the shell under consideration and
extensions thereof outside (0, ¸). Case 2 also approximates a shell with rings at the
ends. By using the present formulation, it is also possible to study a shell subjected
to axisymmetric prestress, i.e., N

x
"NI

x
and Nh"NI h at x"0, ¸.

3. HYDRODYNAMIC LOADING

In the present study, non-linearities are attributed to the shell dynamics, but the
#uid}structure interaction is described by linear potential #ow theory. Evensen and
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Olson [13, 14] observed that the #utter amplitudes remain within the linear range
from the aerodynamics point of view. The non-linear e!ects in the dynamic
pressure and in the boundary conditions at the #uid}structure interface have been
found to be negligible by Gonc7 alves and Batista [22], Ginsberg [26] and Lakis and
Laveau [20] in the case of quiescent #uids.

The #uid #ow is internal to the shell. The #uid is assumed to be incompressible
and inviscid, and the #ow to be isentropic and irrotational. Gravity e!ects, such as
prestress in the shell due to the #uid weight, are neglected. The irrotationality
property is the condition for the existence of a scalar potential function W from
which the velocity may be written as

v"!+W. (10)

The potential W consists of two components: one due to the mean #ow associated
with the undisturbed #ow velocity ; in the axial direction, and the unsteady
component U associated with the shell motion. Thus

W"!;x#U. (11)

The potential of the unsteady component U satis"es the Laplace equation
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The perturbed pressure P may be related to the velocity potential by Bernoulli's
equation for unsteady #uid #ow,
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where<2"+W )+W, P
S
is the stagnation pressure and o

F
is the #uid mass density.

The pressure P in the #uid domain can be written as

P"PM #p,

where PM is the mean pressure and p is the perturbation pressure. For small
perturbations, <2K;2!2;(LU/Lx), and equation (13) gives the stagnation
pressure P

S
"PM #1

2
o
F
;2, so that it is "xed for an assumed mean #ow velocity

and its e!ect on shell dynamics is neglected. Then, equation (13) gives the following
expression for the perturbation pressure:

p"o
FA

LU
Lt

#;
LU
LxB. (14)

3.1. THE WEAVER AND UNNY MODEL

Initially, the model introduced by Randall [27] and specialized by Weaver and
Unny [2] to shells containing #owing #uid is considered. In this case, rigid ba%es
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(extensions), of the same internal diameter as the shell, limit the #uid domain; these
ba%es are inde"nitely long in the axial direction and are connected to the shell, one
at x"0 and the other at x"¸. Axisymmetric modes (n"0) of the shell are no
longer possible when using this model, because they would result in an in"nite
kinetic energy of the #uid and hence, they must be eliminated in the expansion of w.
This item will be discussed further later in this section.

Upon assuming no cavitation, the boundary condition on the #uid-shell interface
is

A
LU
LrB

r/R

"G A
Lw
Lt

#;
Lw
LxB for 0)x)¸,

0 for x(0 and x'¸.

(15)

Upon assuming w"A(t) sin(mnx/¸) cos(nh) and noting that all the terms in the
assumed mode expansion of w may be written in similar form, U may be written as

U"t
n
(x, r, t) cos(nh). (16)

In order to solve the mixed boundary value problem, it is useful to introduce the
Fourier transform

t*
n
"P

=

~=

t
n
(x, r, t) e~jax dx, (17)

where j"J!1 and in which the following conditions have been used:

lim
xP$=

t
n
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xP$=

Lt
n

Lx
"0;

a is the Fourier transform variable. By using equations (16) and (17), the Laplace
equation becomes
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n
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n
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!(n2#a2r2)t*
n
"0. (18)

The solution of equation (18) which is regular at r"0 has the form

t*
n
(a, r, t)"c

n
(a, t)I

n
(ar), (19)

where I
n

is the modi"ed Bessel function of order n, and I@
n

is its derivative with
respect to the argument. By using equation (19), equation (15) yields

a c
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Equations (19) and (20) give
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The inverse Fourier transform gives

t
n
(x, r, t)"

1
2n P

=

~=

t*
n
(a, r, t) ejax da. (22)

Equation (22) gives a "nite result only for nO0. In fact, axisymmetric modes
(n"0) having an odd number m of axial half-waves are associated with the motion
of an in"nite #uid volume; hence, they are physically impossible. Therefore,
axisymmetric modes must not be included in the mode expansion, equation (7),
if in"nite rigid ba%es are considered beyond the axial limits of the shell.

For the perturbation pressure, it is possible to write

p"p
n
cos(nh). (23)

It is useful to apply the Fourier transform in this case also,
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In the transformed domain, by using equation (14), it is possible to write
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Finally, the perturbation pressure at the shell wall that appears in equation (1) is
given by

p
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cos(nh) P
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3.2. THE PAIGDOUSSIS AND DENISE MODEL

In this case, the #uid domain is a cylinder of in"nite extent, within a periodically
supported shell of in"nite length, so that it is possible to employ the method of
separation of variables to obtain the velocity potential. Here the mathematical trick
is to consider the function w and the #uid domain de"ned for any x3(!R, R).
This means that w is a periodic function with main period 2¸, and the same is
veri"ed for the velocity potential and the perturbation pressure. This type of
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solution was initially introduced by Niordson [28] and then used by PamKdoussis
and Denise [1].

If there is no cavitation at the #uid}shell interface, one can write

A
LU
LrB

r/R

"A
Lw
Lt

#;
Lw
LxB. (27)

By using the method of separation of variables, the function U may be written as

U (x, r, h, t)"/(x)t (r) cos(nh) f (t). (28)

Substituting equation (28) into equation (12) and using the condition that the
velocity potential must be regular at r"0, one "nds that

t(r)"c I
n
(mnr/¸). (29)

Equation (27) is then satis"ed by taking
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where w is given by equation (7b) and is therefore of the generic form w"

A(t) sin(mnx/¸) cos(nh). The perturbation pressure at the shell wall, by using
equation (14), is given by

p
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2
w. (31)

4. REDUCTION TO A FINITE-DIMENSIONAL MODEL

Substituting the expansion of w, equation (7b), on the right-hand side of equation
(2) yields a partial di!erential equation for the stress function F, the solution of
which may be written as

F"F
h
#F

p
, (32)

where F
h

is the homogeneous and F
p

is the particular solution. The particular
solution is given by

F
p
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7
(t) sin(5nx/¸)#c

8
(t) cos(nx/¸)#c

9
(t) cos(2nx/¸)#c

10
(t) cos(3nx/¸)
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#c
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28

(t) cos(2nh)

#c
29

(t) cos(2nh) cos(nx/¸)#c
30

(t) cos(2nh) cos(3nx/¸)#c
31

(t) sin(2nh)

#c
32

(t) sin(2nh) cos(nx/¸)#c
33

(t) sin(2nh) cos(3nx/¸), (33)

where the functions c
i
, i"1,2, 33, are given in Appendix A.

The expansion used for the transverse displacement w satis"es the boundary
conditions given by equations (8); moreover, it satis"es exactly the continuity of
circumferential displacement, as shown in Appendix B. The boundary conditions
for either of the in-plane displacements, equations (9), are satis"ed on average.
Speci"cally, the following conditions are imposed:

P
2n

0

N
x
Rdh"0, case 1, (34a)

P
2n

0
P

L

0

Lu
Lx

dxR dh"P
2n

0

[u(¸, h)!u(0, h)]Rdh"0, case 2, (34b)

and for both cases

P
2n

0
P

L

0

N
xh dxR dh"0. (35)

Equation (34a) assures a zero axial force N
x

on the average, while equation (34b)
states that the axial displacement u is zero on average at x"0, ¸. Equation (35) is
satis"ed when u and w are continuous in h on average, and v"0 on average at
x"0, ¸. Substitution of equation (9) with equations (34) and (35) simpli"es
computations, but on the other hand it introduces an approximation. A similar
approach has been used widely in the past in the study of non-linear vibrations of
shells; see, e.g., references [18, 24, 25].
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The homogeneous solution of equation (2) may be assumed to be of the form
[18]

F
h
"

1
2

NM
x
R2h2#

1
2

x2GNM h!
1

2nR¸P
L

0
P

2n

0
C
L2F

p
Lx2 DRdhdxH!NM

xhxRh

"

1
2

NM
x
R2h2#

1
2
x2GNM h#

2Eh
Rn CA1,0

(t)#
A

3,0
(t)

3
#

A
5,0

(t)
5 DH!NM

xhxRh, (36)

where NM
x
, NM h and NM

xh are the in-plane restraint stresses generated at the ends of the
shell, as a consequence of the in-plane constraints on average. Equation (36) is not
the most general homogeneous solution, but it is chosen in order to satisfy the
boundary conditions on average. In fact, it satis"es equations (3) on average as
a consequence of (i) the contribution of F

p
to NM h being (2nR¸)~1: L

0
: 2n
0[L2F

p
/Lx2]Rdhdx and (ii) contributions of F

p
to NM

x
and NM

xh being zero. Boundary
conditions (34, 35) allow one to express the in-plane restraint stresses NM

x
, NM h and

NM
xh, see equations (4}6), in terms of w and its derivatives. For case 1 they give

NM
x
"0, (37a)

(1!l2)
NM h
Eh

"

1
2nR¸ P

2n

0
P

L

0
C(l2!1)

w
R
#

1!l2
2 A

Lw
RLhB

2

D dxR dh, (38a)

NM
xh"0; (39a)

while for case 2, they give

(1!l2)
NM

x
Eh

"

1
2nR¸ P

2n

0
P

L

0
C!

lw
R

#

1
2A

Lw
LxB

2
#

l
2A

Lw
RLhB

2

D dxR dh, (37b)

(1!l2)
NM h
Eh

"

1
2nR¸P

2n

0
P

L

0
C!

w
R
#

l
2 A

Lw
LxB

2
#

1
2A

Lw
RLhB

2

D dxR dh, (38b)

NM
xh"0. (39b)

For case 1, simple calculations give

NM h"EhG!
2

nRCA1,0
(t)#

A
3,0

(t)
3

#

A
5,0

(t)
5 D

#

n2

8R2
[A2

1,n
(t)#B2

1,n
(t)#A2

2,n
(t)#B2

2,n
(t)]H; (40)
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for case 2, the results are

NM
x
"

Eh
1!l2G

!2l
nR CA1,0

(t)#
A

3,0
(t)

3
#

A
5,0

(t)
5 D#

n2

4¸2
[A2

1,0
(t)#9A2

3,0
(t)#25A2

5,0
(t)]

#

1
8A

n2

¸2
#

ln2

R2B [A2
1,n

(t)#B2
1,n

(t)]#
1
2A

n2

¸2
#

ln2

4R2B [A2
2,n

(t)#B2
2,n

(t)]H, (41)

NM h"
Eh

1!l2G
!2
nR CA1,0

(t)#
A

3,0
(t)

3
#

A
5,0

(t)
5 D#

ln2

4¸2
[A2

1,0
(t)#9A2

3,0
(t)#25A2

5,0
(t)]

#

1
8 A

ln2

¸2
#

n2

R2B[A2
1,n

(t)#B2
1,n

(t)]#
1
2 A

ln2

¸2
#

n2

4R2B [A2
2,n

(t)#B2
2,n

(t)]H. (42)

At this point, all the terms involved in the equation of motion, equation (1), have
been evaluated.

By using the Galerkin method, generally seven second-order ordinary, coupled
non-linear di!erential equations are obtained for the variables A

1,n
(t), B

1,n
(t),

A
2,n

(t), B
2,n

(t), A
1,0

(t), A
3,0

(t) and A
5,0

(t), by successively weighting the single
original equation with suitable functions z

s
, s"1,2, 7, and integrating over the

shell middle surface. The weighting functions z
s
are de"ned as

z
s
(x, h)"

i
g
g
g
j
g
g
g
k

cos(nh) sin(nx/¸) for s"1

sin(nh) sin(nx/¸) for s"2

cos(nh) sin(2nx/¸) for s"3

sin(nh) sin(2nx/¸) for s"4

sin(nx/¸) for s"5

sin(3nx/¸) for s"6

sin(5nx/¸) for s"7

e
g
g
g
f
g
g
g
h

) (43)

The Galerkin projection of the equation of motion (1), in this case, may be
expressed as

S[equation (1)], z
s
T"P

2n

0
P

L

0

[equation (1)] z
s
(x, h) dx dh, (44)

and it has been performed by using the Mathematica computer software [29].

4.1. EQUATIONS OF MOTION FOR THE WEAVER AND UNNY MODEL

The Galerkin projections in the case of a shell with internal #ow modelled by the
Weaver and Unny theory and subjected to an external excitation
f"f

n
cos(nh) sin(nx/¸) cos(ut) of unspeci"ed physical origin, give the following

system of four equations.



668 M. AMABILI E¹ A¸.
The "rst one is

A$
1,n

(t)#2f
1,n

u
1,n

AQ
1,n

(t)#Au2
1,n

!

;2o
F
¸2n2m

0,n
m

1
BA1,n

(t)!
4;o

F
¸2n2j

1,n
m

1

AQ
2,n

(t)

#h
1
A3

1,n
(t)#h

1
A

1,n
(t)B2

1,n
(t)#h

2
A

1,n
(t)A2

2,n
(t)#h

3
A

1,n
(t)B2

2,n
(t)

#h
4
A

2,n
(t)B

1,n
(t)B

2,n
(t)"

n¸
2m

1

f
n
cos(ut), (45a)

where

m
i,n
"P

=

~=

I
n
(aR)

I @
n
(aR)

1#cos(a¸)
(n2!a2¸2)2

a1~ida for i"0, 2,

m
1
"ohn¸/2#o

F
¸2n2m

2,n
,

j
i,n
"P

=

~=

I
n
(aR)

I @
n
(aR)

sin(a¸)
(4n2!a2¸2) (n2!a2¸2)

a1~ida for i"0, 1, 2,

u2
1,n

"

n¸
2 CDA

n2

¸2
#

n2

R2B
2
#

Ehn4

R2¸4NA
n2

¸2
#

n2

R2B
2

DNm
1
, f

1,n
"ch

n¸
2 N(2u

1,n
m

1
),

and h
i
, i"1,2, 4, are coe$cients depending on geometry, material properties and n

that arise from projections of the part of equation (1) involving the stress function F.
The second equation of the system is

B$
1,n

(t)#2f
1,n

u
1,n

BQ
1,n

(t)#Au2
1,n

!

;2o
F
¸2n2m

0,n
m

1
BB1,n

(t)!
4;o

F
¸2n2j

1,n
m

1

BQ
2,n

(t)

#h
1
B3

1,n
(t)#h

1
B

1,n
(t)A2

1,n
(t)#h

2
B
1,n

(t)B2
2,n

(t)#h
3
B
1,n

(t)A2
2,n

(t)

#h
4
B

2,n
(t)A

1,n
(t)A

2,n
(t)"0. (45b)

The third equation is

A$
2,n

(t)#2f
2,n

u
2,n

AQ
2,n

(t)#Au2
2,n
!

4;2o
F
¸2n2g

0,n
m

2
BA2n

(t)#
8;o

F
¸2n2j

1,n
m

2

AQ
1,n

(t)

#k
1
A3

2,n
(t)#k

1
A

2,n
(t)B2

2,n
(t)#k

2
A

2,n
(t)A2

1,n
(t)#k

3
A

2,n
(t)B2

1,n
(t)

#k
4
A

1,n
(t)B

1,n
(t)B

2,n
(t)"0, (45c)
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where

g
i,n
"P

=

~=

I
n
(aR)

I@
n
(aR)

1!cos(a¸)
(4n2!a2¸2)2

a1~ida for i"0, 2,

m
2
"ohn¸/2#4o

F
¸2n2g

2,n
,

u2
2,n

"

n¸
2 CDA

4n2

¸2
#

n2

R2B
2
#

16Ehn4

R2¸4 NA
4n2

¸2
#

n2

R2B
2

DNm
2
,

f
2,n

"ch
n¸
2 N(2u

2,n
m

2
),

and k
i
, i"1,2, 4, are appropriate coe$cients.

The last equation of the system is

B$
2,n

(t)#2f
2,n

u
2,n

BQ
2,n

(t)#Au2
2,n

!

4;2o
F
¸2n2g

0,n
m

2
BB2,n

(t)#
8;o

F
¸2n2j

1,n
m

2

BQ
1,n

(t)

#k
1
B3

2,n
(t)#k

1
B

2,n
(t)A2

2,n
(t)#k

2
B
2,n

(t)B2
1,n

(t)#k
3
B
2,n

(t)A2
1,n

(t)

#k
4
B

1,n
(t)A

1,n
(t)A

2,n
(t)"0. (45d)

System (45) has been obtained for boundary condition N
x
"0 (case 1); for

condition u"0 some additional non-linear terms appear in the equations.
As a consequence of the assumed external or #ow-related excitation appearing

only in equation (45a), it is possible to have a solution for B
1,n

(t)"0 and
B
2,n

(t)"0 [for A
1,n

(t)O0, A
2,n

(t)O0]; this solution gives the so-called driven
mode. The solution for B

1,n
(t)O0 and B

2,n
(t)O0 gives both the driven mode,

related to A
1,

(t) and A
2,n

(t), and the companion mode, related to B
1,n

(t) and B
2,n

(t).

4.2. EQUATIONS OF MOTION FOR THE PAIGDOUSSIS AND DENISE MODEL

The Galerkin projections in the case of a shell with #owing #uid inside modelled
by the PamKdoussis and Denise's theory and subjected to an external excitation, give
the following system of seven equations. The "rst one is

A$
1,n

(t)#2f
1,n

u
1,n

AQ
1,n

(t)#Au2
1,n

!

;2o
F
n2 I

n
(nR/¸)

2m
1
I@
n
(nR/¸) BA1,n

(t)

!

4;o
F
¸I

n
(2nR/¸)

3m
1
I @
n
(2nR/¸)

AQ
2,n

(t)
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(t)#h

2
A

1,n
(t)A2

2,n
(t)#h
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where

m
1
"ohn¸/2#o
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(nR/¸)/[2I@

n
(nR/¸)],
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"
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#
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m

1
),

and h
i
, i"1,2, 12, are coe$cients depending on geometry, material properties

and n that arise from projections of the part of equation (1) involving the stress
function F.

The second equation is
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The third equation is
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where
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and k
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, i"1,2, 12, are appropriate coe$cients.

The fourth equation is
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The "fth equation, that is related to the "rst axisymmetric degree of freedom, is
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and l
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, i"1,2, 7, are appropriate coe$cients.



672 M. AMABILI E¹ A¸.
The sixth equation is
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where
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and n
i
, i"1,2, 7, are appropriate coe$cients.

The last equation is
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and p
i
, i"1,2, 6, are appropriate coe$cients.

System (46) was obtained for boundary condition N
x
"0 (case 1); for condition

u"0, some additional non-linear terms appear in the equations.
Equations (45) and (46) can be integrated by means of standard numerical

schemes, such as a Runge}Kutta routine.

5. TRAVELLING-WAVE MODE

The presence of the companion mode in the periodic response of the shell leads to
the appearance of travelling waves. The #exural mode shapes are represented
by equation (7b). Upon supposing that A

1,n
(t)"AI

1,n
cos(ut#0

1
), B

1,n
(t)"
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BI
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2
), A
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3
) and B
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2,n
cos(ut#0

4
),

equation (7b) can be rearranged as

w"M[AI
1,n

cos(ut#0
1
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sin(ut#0

4
)] cos(nh)
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4
)N sin(2nx/¸)#O(e2), (47)

where 0
1
, 0

2
, 0

3
, and 0

4
are the phase constants in the solution of equations (45) and

(46), u is the radian frequency of the shell response, and e is a small quantity. O(e2)
denotes small terms of higher order in the response of the shell [in equation
(47) only "rst-order asymmetric terms are considered]. Equation (47) gives two
travelling waves of amplitude BI

1,n
and BI

2,n
and radian frequency u

T
"u/n, and

two standing waves of radian frequency u. The resulting standing wave with m "1
is given by the sum of two standing waves, one of amplitude AI

1,n
and the second of

amplitude BI
1,n

, having the same radian frequency u and the same shape, but having
a phase di!erence of 0

2
!0

1
!n/2 (similarly for m"2). When 0

2
!0

1
Kn/2, the

amplitude of the resulting standing wave is almost AI
1,n

#BI
1,n

. The amplitude and
frequency of the travelling wave solutions are not a!ected by phase relationship
between driven and companion modes.

In general, the existence of driven and companion modes leads to the appearance
of a circumferentially travelling wave and a standing wave; this phenomenon is
related to the axial-symmetry of the system. As a consequence of both these modes
appearing for forced and #uid-excited non-linear vibrations, this phenomenon
represents a fundamental di!erence vis-a% -vis linear vibrations.

6. NUMERICAL RESULTS

Numerical results were obtained for a case already studied in the literature, in
order to allow a comparison. The case analyzed here was studied analytically by
Weaver and Unny [2] by means of linear theory and it relates to a circular
cylindrical shell, simply supported at the ends (N

x
"0), containing #owing water

and having the following characteristics: ¸/R"2, h/R"0)01, E"206]109Pa,
o"7850 kg/m3, o

F
"1000 kg/m3 and l"0)3. It is studied for the circumferential

wavenumber n"5, which is associated with the lowest #ow velocity for instability
in the linear case. A non-dimensional #uid velocity< is introduced for convenience,
de"ned as by Weaver and Unny [2] by <";/M(n2/¸)[D/(oh)]1@2N, with D as in
equation (1); similary, a non-dimensional, generally complex, frequency X is de"ned
as X"u/M(n2/¸2)[D/(oh)]1@2N, u being the corresponding radian frequency. In this
section, the external excitation f is assumed to be zero.

6.1. LINEAR CASES

Figure 1 shows the real and imaginary part of the eigenvalues of the linearized
equations of motion, obtained from equations (45) and (46) after deleting the



Figure 1. Non-dimensional complex frequency X obtained from the linearized equations without
viscous damping (f"0) versus the non-dimensional #ow velocity <: **, model of Weaver and
Unny; - - - -, model of PamKdoussis and Denise; D divergence; R restabilization; F #utter. (a) Real part of
X ; (b) imaginary part of X.
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non-linear terms, for the #uid}structure interaction models of both Weaver and
Unny and PamKdoussis and Denise without dissipation (f"0). It is interesting to
note that the two models give quite similar results in the linear range. Furthermore,
the results obtained by using the Weaver and Unny model to describe the
#uid}structure interaction are almost identical to those already published in
reference [2]; it gives a validation of the linear part of the equations of motion. In
Figure 1(a), the two curves give the real frequency X of the self-excited linearized
system versus the non-dimensional #uid velocity<; the lower curve corresponds to
the "rst longitudinal mode and the upper one to the second longitudinal mode.
Figure 1(b) gives the imaginary component of the eigenfrequency, proportional to
damping; when Im(X)'0, the system is stable, while Im(X)(0 means that the
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system is unstable. Point D, where the "rst curve in Figure 1(a) reaches zero
frequency, corresponds to static divergence of the system (<"3)54 or 3)33).
The intersection of the second curve with the zero frequency gives the point of
restabilization (R) of the system (<"4)56 or 4)34). Then, the merging of the "rst
and second mode loci at point F corresponds to the onset of coupled-mode #utter
(<"4)97 and 4)65). It should be emphasized here that, strictly, the existence of
coupled-mode #utter cannot be decided by linear theory* cf. Holmes'work on the
analogous thick-walled pipe problem, as discussed in references [11, 30], where it
was shown by non-linear analysis that, in that case, coupled-mode #utter cannot
occur. Obviously, in the linear case, no coupling with axisymmetric modes and with
companion modes is present.

Figure 2 presents results for the Weaver and Unny model with viscous damping
f"0)01, which corresponds to a slightly overestimated damping with respect
Figure 2. Non-dimensional complex frequency X obtained from the linearized equations with
viscous damping f"0)01 versus the non-dimensional #ow velocity < for the Weaver and Unny
model. (a) Real part of X; (b) imaginary part of X.
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to some of the available experimental data for a shell containing water (see
reference [31]). Two main di!erences can be observed with respect to the previous
case: (i) one eigenfrequency with a small, positive imaginary part always exists,
corresponding to damped vibrations due to the dissipation introduced; (ii)
post-divergence restabilization of the system occurs no longer, since after the onset
of divergence there is always an eigenvalue with a negative imaginary part. The
intersections of the loci of Real(X) with the abscissa remain the same.

6.2. NON-LINEAR RESULTS WITHOUT COMPANION MODE PARTICIPATION

Simpli"ed solutions can be obtained by eliminating from the equations of motion
a few degrees of freedom. These solutions are of interest because they are strictly
related to those obtained by solving the complete set of equations, as discussed in
the following sections.

Solutions of equations (45) and (46) presented in this section have been obtained
numerically by using the Auto software [32], based on a collocation method.

6.2.1. Case with in-phase asymmetric modes

In this case the condition B
1,n

(t)"B
2,n

(t)"0, corresponding to the elimination
of the companion mode, has been imposed over the whole time domain;
consequently, the Weaver and Unny discretized model reduces to a two-degree-
of-freedom system [equations (45)], while the PamKdoussis and Denise model reduces
to one of "ve degrees of freedom [equations (46)]. The two asymmetric modes
retained are both associated with the same function cos(nh) in the angular direc-
tion, so they are &&in-phase'' or in &&anti-phase'' in h.

The amplitudes of all of the generalized co-ordinates for the system including
dissipation (f"0)01) are shown in Figure 3 for the Weaver and Unny model and in
Figure 4 for that of PamKdoussis and Denise. In this latter case, in addition
to the amplitudes of the "rst and second longitudinal modes, Figure 4(c}e) show
the amplitude of the generalized co-ordinates associated with the axisymmetric
deformation of the shell wall. All solutions found are non-oscillatory (stationary),
i.e., they correspond to "xed points.

Figures 5 and 6 present the non-dimensional displacement of a point of
the shell located at x"¸/4 and circumferentially on an antinodal line versus the
non-dimensional #uid velocity < for the models of Weaver and Unny and
PamKdoussis and Denise, respectively. Therefore, they have the same meaning as
Figures 3 and 4, but the amplitude in this case is synthesized from the contributions
of all the di!erent degrees of freedom, so that it can be interpreted physically more
easily.

One can "rst discuss the results obtained according to the Weaver and Unny
model. It is seen in Figure 3(a) that this model predicts a divergence of hardening
type at<"3)54, involving the "rst longitudinal mode (branch &&1''). This bifurcated
solution remains stable until <"5)56 is reached. However, at <"4)56 a second
divergence arises (branch &&2''), associated with the second longitudinal mode
(Figure 3(b)); it becomes stable at <"4)71. Therefore, for 4.71(<(5)56, there



Figure 3. Amplitude of non-oscillatory (beyond divergence) solutions versus the non-dimensional
#ow velocity <; #uid model of Weaver and Unny, for in-phase modes and viscous damping f"0)01.
**, Stable branches; - - - -, unstable branches. (a) Amplitude of the "rst longitudinal mode A

1,n
/h;

(b) amplitude of the second longitudinal mode A
2,n

/h.
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exist two stable solutions. Both symmetric branches for positive (inwards) and
negative (outwards) shell displacement are stable, so that, in case of perturbation of
the system, the solution can jump from one branch to the other. Indeed, for
4)71(<(5)56 there exist four stable solutions and several unstable ones, as seen
in Figure 5, and hence jumps should occur relatively &&easily''.

One can next consider the dynamics according to the PamKdoussis and
Denise model, which predicts an even more complex dynamical behaviour. Before
discussing the dynamical behaviour per se, let us discuss the axisymmetric
deformation of the shell, as shown in Figures 4(c}e). In particular, Figure 4(c) shows
that the displacement related to the "rst axisymmetric mode is always positive, so
that e!ectively it gives a contraction to the shell. Figure 4(d) shows that the third
axisymmetric mode slightly reduces the contraction (away from the middle of the
shell) given by the "rst axisymmetric mode for divergence in the "rst mode, but
increases contraction for divergence in the second mode. The "fth axisymmetric



678 M. AMABILI E¹ A¸.
mode slightly reduces the contraction given by the other two axisymmetric modes;
in fact, it is always negative, as shown in Figure 4(e).

One can now consider the dynamics, as shown in Figures 4 and 6 together.
The system in this case loses stability in its "rst longitudinal mode by
divergence (branch &&1''), as seen in Figure 4(a), at <"3)33. However, in this case
the bifurcation is strongly subcritical, which agrees with observations [1]; indeed,
the range of < over which the system may diverge, given enough disturbance,
extends over 1)31(<(3)33! At <"1)91 there appears a second stable solution
(divergence) associated with the second longitudinal mode (branch &&2''). After this
value of <, the system could easily undergo jumps, as a consequence of the
coexistence of four stable solutions and some unstable solutions. Figure 6 shows
that the system is no longer symmetrical with respect to zero displacement, as
a consequence of the axisymmetric displacement. It is clear that inward
axisymmetric displacements (positive) are larger than outwards displacements, as
Figure 4. Amplitude of non-oscillatory solutions versus the non-dimensional #ow velocity <; #uid
model of PamKdoussis and Denise, for in-phase modes and viscous damping f"0)01. **, Stable
branches; - - - -, unstable branches. (a) Amplitude of the "rst longitudinal mode A

1,n
/h; (b) amplitude of

the second longitudinal mode A
2,n

/h; (c) amplitude of the "rst axisymmetric mode A
1,0

/h;
(d) amplitude of the third axisymmetric mode A

3,0
/h; (e) amplitude of the "fth axisymmetric mode

A
5,0

/h.



Figure 4. Continued.
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already observed by others for non-linear shell vibrations; see, e.g., reference [18]. It
is necessary to note that, for large inward displacement, the cross-section of the
shell is diminished, so that the #ow is impeded; this e!ect is not taken into account
in the present linear model of interaction between #uid and shell.

It is very interesting to observe that the models of Weaver and Unny
and PamKdoussis and Denise give di!erent kinds of non-linear dynamical
behaviour of the system. In fact, this is closely related to the fact that the Weaver
and Unny model does not allow for axisymmetric contraction of the shell, which



Figure 5. Non-oscillatory, non-dimensional displacement of a point on the shell located at x"¸/4
(and circumferentially on an antinodal line) versus the non-dimensional #ow velocity<; #uid model of
Weaver and Unny with viscous damping f"0)01. **, Stable branches; - - - -, unstable branches.

Figure 6. Non-oscillatory, non-dimensional displacement of a point on the shell located at x"¸/4
(and circumferentially on an antinodal line) versus the non-dimensional #ow velocity<; #uid model of
PamKdoussis and Denise with viscous damping f"0)01.**, Stable branches; - - - -, unstable branches.
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is responsible for its softening behaviour [18]; consequently, the predicted system
behaviour is of the hardening type after divergence. However, perfectly rigid
extensions beyond the shell of in"nite length are only a theoretical arti"ce for
solving the mixed boundary value problem. Axisymmetric contraction is usually
possible in engineering applications of shells, so that the behaviour obtained by
using the model of PamKdoussis and Denise must, in this respect, be considered closer
to reality.

6.2.2. Case with asymmetric modes orthogonal in h

In this case, the condition B
1,n

(t)"A
2,n

(t)"0 has been imposed over the whole
time domain, corresponding to consideration of two longitudinal modes involving
two orthogonal functions in h [modes rotated by n/(2n)]. Similarly to the previous
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section, the Weaver and Unny discretized model reduces to a two-degree-of-
freedom system [equation (45)], while the PamKdoussis and Denise model reduces to
one of "ve degrees of freedom [equation (46)].

The amplitudes of all of the generalized co-ordinates for the system including
dissipation (f"0)01) are shown in Figure 7 for the Weaver and Unny model and in
Figure 8 for that of PamKdoussis and Denise.
Figure 7. Amplitude of non-oscillatory solutions versus the non-dimensional #ow velocity <; #uid
model of Weaver and Unny, orthogonal modes and viscous damping f"0)01.**, Stable branches;
- - - -, unstable branches. (a) Amplitude of the "rst longitudinal mode A

1,n
/h; (b) amplitude of the

second longitudinal mode A
2,n

/h; (c) non-dimensional displacement of a point on the shell located at
x"¸/4 and circumferentially where sin(nh)"cos(nh).
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The results according to the Weaver and Unny model are considered "rst.
Figure 7 shows that a di!erent branch &&3'' appears with respect to the one detected
in Figures 3 and 5. This is obtained with both of the retained degrees of freedom
being active. In particular, the new detected coupled-mode solution is unstable (but
it becomes stable when all the four degrees of freedom become active, as shown in
section 6.4) and exists for 4)76(<(5)19. Other interesting di!erences are that the
divergence in the "rst mode (branch &&1'') is no longer stable for <'4)76, and
divergence in the second mode (branch &&2'') is unstable for <(5)19.

Figure 8 relates to the results obtained via the PamKdoussis and Denise model.
In this case also, the coupled-mode solutions are di!erent, compared to those
presented in Figures 4 and 6. In particular, branch &&3'' is unstable, but becomes
stable after the folding, i.e., for <'1)84, when all the seven degrees of freedom are
Figure 8. Amplitude of non-oscillatory solutions versus the non-dimensional #ow velocity <; #uid
model of PamKdoussis and Denise, orthogonal modes and viscous damping f"0)01. **, Stable
branches; - - - -, unstable branches. (a) Amplitude of the "rst longitudinal mode A

1,n
/h; (b) amplitude of

the second longitudinal mode A
2,n

/h; (c) amplitude of the "rst axisymmetric mode A
1,0

/h;
(d) amplitude of the third axisymmetric mode A

3,0
/h; (e) amplitude of the "fth axisymmetric mode

A
5,0

/h.



Figure 8. Continued.
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active (see Section 6.4). As a consequence of divergence in both the "rst (branch &&1'')
and second (branch &&2'') mode losing stability at <"2)03 and <"4)56,
respectively, the only stable solution (when all the seven generalized co-ordinates
are di!erent from zero) at high #ow velocity is the coupled-mode one.
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6.3. ANALYTICAL EQUILIBRIUM POSITIONS

The stationary solutions are obtained by equations (45) and (46) by cancelling all
the time-dependent terms; this gives algebraic equations that, in general, can be
solved numerically. The case without companion-mode participation for the model
of Weaver and Unny is particularly simple and analytical solutions can be given.
Let us consider "rstly the case with B

1,n
"B

2,n
"0. In particular, the divergence

amplitudes in the "rst longitudinal mode, i.e. the post-divergence "xed points, are
given by

A
1,n

"$J(a
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;2!u2
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)/h

1
, A

2,n
"0, (48)

and those in the second longitudinal mode by
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and they are de"ned only where both terms under the square root are positive.
For the case studied in section 6.2.2 with B

1,n
"A

2,n
"0, equations (48) and (49)

remain valid with B
2,n

replacing A
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; in contrast, equation (50) is replaced by
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These analytical results are in excellent agreement with the numerical ones ob-
tained by using the Auto software.

The case with companion mode participation for the Weaver and Unny model
allows simple analytical solutions for divergence in the "rst longitudinal mode,

A2
1,n

#B2
1,n

"(a
1
;2!u2
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)/h

1
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2,n
#B2
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"0, (51a, b)
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and for divergence in the second longitudinal mode,
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"0, A2
2,n

#B2
2,n

"(a
2
;2!u2

2,n
)/k
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Equations (51) and (52) prove that the post-divergence con"gurations, in the case of
companion-mode participation, are described by surfaces generated by rotation of
the divergence solution without companion mode around the <-axis; results of
equation (51) are shown in Figure 9(a).

The axisymmetric solutions when all the degrees of freedom are active are given
by
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and by
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Equations (53) are obtained by using the condition B
1,n

/A
1,n

"!B
2,n

/A
2,n

, which
means that the "rst and second longitudinal modes are in anti-phase in h, and
equation (54) by using the condition A

1,n
/B

1,n
"!B

2,n
/A

2,n
, meaning that the "rst

and second longitudinal modes are orthogonal in h; these conditions are the only
ones that allow axisymmetric solutions. It is to be noted that equations (53) admit
solutions along a generating line of the axisymmetric surface; in contrast, equations
(54) admit only helicoidal solutions, as a consequence of the condition A

1,n
/B

1,n
"

!B
2,n

/A
2,n

and the shape of the surfaces of equations (54a, b). The axisymmetric
condition gives also two constraints for some of the coe$cients in the equations of
motion (45); they are: h

2
!h

3
!h

4
"0 and k

2
!k

3
!k

4
"0, and they are satis"ed

by the coe$cients in equations (45) and (46).
Analytical solutions for the model of PamKdoussis and Denise are complicated by

the presence of three additional degrees of freedom. However, numerical solution of
the algebraic equations is in excellent agreement with the solution obtained by
using Auto in the case without companion mode participation. When the compan-
ion mode is considered, the post-divergence con"gurations are given by surfaces
generated by rotation of the divergence solution without companion mode around
the<-axis, as for the model of Weaver and Unny; this can easily be veri"ed by using
equations (46). Analogously to what was found in equations (53) and (54), the
stationary solutions for the PamKdoussis and Denise model are axisymmetric when
they involve all the generalized co-ordinates and they satisfy the condition



Figure 9. Divergence of the "rst longitudinal mode for the model of Weaver and Unny.
(a) Analytical solution; (b) numerical solution starting from undisturbed initial conditions and
di!erent perturbations.
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B
1,n

/A
1,n

"!B
2,n

/A
2,n

, i.e., when the "rst and second longitudinal modes are in
anti-phase in h (i.e. they are described by the same function in h), or
A

1,n
/B

1,n
"!B

2,n
/A

2,n
, i.e., when the "rst and second longitudinal modes are

orthogonal in h.

6.4. NON-LINEAR RESULTS WITH COMPANION-MODE PARTICIPATION

When all the generalized co-ordinates are retained in equations (45) and (46), the
system does not possess a preferential angular co-ordinate to locate the modes. The
solution can be imagined in three-dimensional (3-D) plots, where one represents the
amplitude of the driven and companion modes versus < for the two pairs of
variables MA

1,n
, B

1,n
N and MA

2,n
, B

2,n
N. In particular, a section of this 3-D plot for

zero amplitude of the companion mode (B
1,n

"0 and B
2n
"0 respectively) gives

the 2-D plot already obtained in Figure 3 or 4; obviously, in view of the symmetry
of the equations (for zero external excitation) and of the physical system, the same
2-D plot is obtained for a section at zero amplitude of the driven mode (A

1,n
"0

and A
2,n

"0 respectively). Therefore, the non-oscillatory solutions can be imagined
as surfaces generated by rotation of the corresponding curves in Figure 3(a) [or
Figures 3(b), 4(a) and (b), respectively] around the <-axis, as shown in section 6.3.
Stable branches in Figures 3 and 4 generate stable surfaces. In this case, jumps from
one point on the surface to another on the same surface or on a di!erent surface can
arise even more easily than for the case described in section 6.2. Moreover, the
jumps can also give rise to the phenomenon of nodal lines travelling around the
shell in the circumferential direction. Surfaces of rotation are obtained also when
one represents in 3-D plots the solutions for the case studied in section 6.2.2 and
represented in 2-D plots in Figures 7 and 8.

In order to simulate the dynamical behaviour of the complete system, equations
(45) and (46) have been integrated numerically, starting from an initially
undisturbed con"guration at zero #ow velocity. The adaptive step-size fourth- and
"fth-order Runge}Kutta method has been used as the integration algorithm.
Figure 9(b) shows the divergence of the "rst longitudinal mode for the Weaver and
Unny model, starting from undisturbed initial conditions and di!erent
perturbations; it is clear that the bifurcation paths belong to the surface of
revolution representing the stable solution. This con"rms the result obtained in
equation (51) and shown in Figure 9(a).

Figure 10 shows the dynamical behaviour of the system according to the model
of Weaver and Unny, starting from an undisturbed initial condition and slowly
increasing the #ow velocity. The integration time is 106/u

1,n
seconds and the

number of integration points is 10 000. It is clear that the system remains in the
initial con"guration until divergence in the "rst mode, at <"3)54. At a #ow
velocity <+4)76, the system shows a transitional behaviour; after that, it diverges
in the second longitudinal mode, with a corresponding modal change; between the
two phases there is a relative rotation of the nodal lines around the shell. This result
is in very good agreement with the results shown in Figure 7, where it is shown that
the "rst-mode divergence loses stability at the same velocity. The oscillation



Figure 10. Behaviour of the system starting from undisturbed initial conditions and slowly
increasing the non-dimensional #ow velocity < for the model of Weaver and Unny.
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amplitudes during the transitional state follow the shape of the stable branch &&3'' in
Figure 7.

Figure 11 presents results of an analogous numerical integration of the equations
of motion for the model of PamKdoussis and Denise. Integration starts from a point
on the "rst divergence mode (B

1,n
"A

2,n
"B

2,n
"0) and the #ow velocity is slowly

decreased; the integration time is 4)3]104/u
1,n

seconds, and the number of integra-
tion points is 12 000. The behaviour of the system can easily be explained by
comparison with Figure 4.

Several numerical integrations at a "xed velocity,<"4)93, have been performed
starting with di!erent initial conditions. Figure 12 shows a typical time history; all
the generalized co-ordinates converge to di!erent "xed points depending on the
initial conditions. In particular, the generalized co-ordinates related to axisymmet-
ric modes always converge to the same values; the relationships among the other
generalized co-ordinates are plotted in Figure 13. In particular, Figures 13(a) and
13(b) show relationships analogous to equations (54a) and (54b), respectively,
extended to the case with seven degrees of freedom, and Figure 13(c) shows that the
system satis"es the relation A

1,n
/B

1,n
"!B

2,n
/A

2,n
. In Figure 13, dots represent

results ("xed points) obtained with numerical integration; one of these results is
shown in Figure 12.



Figure 11. Behaviour of the system starting from a point on the "rst-divergence con"guration and
slowly decreasing the non-dimensional #ow velocity < for the model of PamKdoussis and Denise.

Figure 12. Numerical integration at a "xed velocity,<"4)93. (a) Generalized co-ordinates relative
to asymmetric modes; (b) generalized co-ordinates relative to axisymmetric modes.
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Figure 13. Relationship among the "xed points of the coupled-mode solution at velocity<"4)93.
(a) Relationship between A

1,n
and B

1,n
; (b) relationship between A

2,n
and B

2,n
; (c) relationship between

A
1,n

/B
1,n

and B
2,n

/A
2,n

.
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A numerical integration was performed starting from one of the "xed points
obtained at <"4)93 and then slowly decreasing the #ow velocity. The result is
shown in Figure 14 and shows that all the seven generalized co-ordinates are
di!erent from zero for a large range of #ow velocities. It is interesting to observe
that, for<'1)84, the solution belongs to an axisymmetric surface and it is rotating
around its axis; it gives a kind of helicoidal motion. This axisymmetric surface is
obtained by rotation of branch &&3'' in Figure 8 around the <-axis. For
1)31(<(1)84, the system follows the "rst-mode divergence without rotating any
more. At<"1)31 the system gains the stable undeformed con"guration. Figure 15
presents the shape of the shell in post-divergence con"gurations for the same
branch (coupled-mode divergence) at <"2, 3 and 4. One should note the twist of
the shell and the growth in the post-divergence amplitudes with <.

Finally, a set of numerical integrations have been performed at #ow velocity
<"2. Several initial conditions, of the form A

1,n
"constant have been tried, with

the remaining variables and all the time derivatives equal to zero, to investigate the
basin of attraction of "rst-mode divergence. Figure 16(a) shows the solution for the
initial condition A

1,n
"2)5, and it is seen that it converges to the undeformed

condition. In contrast, the solution for the initial condition A
1,n

"2)6 converges to
the "rst-divergence branch, as shown in Figure 16(b). Thus, the lower bound of the
basin of attraction for the stable "rst-mode divergence branch in terms of A

1,n
lies

somewhere between A
1,n

"2)5 and 2)6, which is actually a little lower than the
unstable branch (which is at A

1,n
"3)5).

7. DISCUSSION AND CONCLUSIONS

The present study clari"es for the "rst time several aspects of the dynamics and
stability of simply supported circular cylindrical shells with #ow, by means of
non-linear theory. The results show that a circular cylindrical shell under the action
of internal #ow loses stability by divergence. The actual behaviour of the system,
when axisymmetric modes are allowed shows that the divergence is subcritical,
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giving a softening-type behaviour for small displacement, becoming hardening for
larger amplitudes. It is very interesting to observe that the system has two or more
stable solutions, related to divergence in the "rst or "rst and second longitudinal
modes, much before linear divergence occurs. This means that the shell, if perturbed
from the initial con"guration, can have very severe deformations, which can be the
cause of failure, much before the failure velocity predicted by the linear threshold.
In particular, for the case studied, the system can diverge for < larger than 1)31,
while linear theories predict divergence only for <"3)33, which represents a
di!erence larger than 2)5 times! This means that a non-linear study is really
necessary to predict stability of circular cylindrical shells containing #owing #uid.
A synthesis of these non-linear results, compared to linear ones, is given in Table 1.
Figure 14. Behaviour of the system starting from a point on the coupled-mode divergence at
<"4)93 obtained when slowly decreasing the non-dimensional #ow velocity <; model of PamKdoussis
and Denise. Generalized co-ordinates: (a) A

1,n
and B

1,n
versus <; (b) A

2,n
and B

2,n
versus <; (c) A

1,0
;

(d) A
3,0

; (e) A
5,0

.



Figure 14. Continued.
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Another important result is obtained for the coupled-mode divergence, which
has been shown to be of two di!erent kinds. In particular, it has been found that the
"rst longitudinal mode combines (i) with the second longitudinal mode that is in
anti-phase in the angular co-ordinate, and (ii) with the second longitudinal mode
that is orthogonal to the "rst in the angular co-ordinate. These two solutions give
rise to two quite distinct types of behaviour of the system.



Figure 15. Shell shape for coupled-mode divergence at di!erent #ow velocities: (a)<"2; (b)<"3;
(c) <"4.
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The present study could be improved by using a more re"ned non-linear shell
theory instead of the non-linear Donnell shallow shell one. However, as a conse-
quence of the system losing stability by divergence, the e!ect of neglecting in-plane
inertia is negligible; more signi"cant would be to use of a theory which is accurate
for very large shell displacements. A non-linear theory to describe the #uid}struc-
ture interaction could be a further re"nement, but this is expected to give a signi"-
cant e!ect only at very large shell displacements. More interesting could be to verify
the e!ect of additional longitudinal modes in the expansion of the shell #exural
displacement that are expected to complicate further the post-divergence dynamics
of the system; however, the solutions related to divergence in the "rst (m"1) and
second (m"2) asymmetric modes, excluding coupled mode solutions, should
remain unchanged. In fact, single-mode solutions should remain valid even if more
asymmetric modes (m'2) are added.



Figure 16. Numerical integration at <"2 for PamKdoussis and Denise model. Initial conditions
di!erent from zero: (a) A

1,n
"2)5; (b) A

1,n
"2)6.

TABLE 1

Comparison of linear and non-linear, non-dimensional critical -uid velocities< for the
-uid}structure interaction model of PaıKdoussis and Denise

First mode divergence Second mode divergence &&Helicoidal'' solution

Linear <"3)33 <"4)34 *

Nonlinear 1)31)<)3)33 1)91)<)4)34 <'1)84
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APPENDIX A: TIME FUNCTIONS USED IN EQUATION (33)

The functions c
i
(t), i"1,2, 33, used in equation (33) are given by
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APPENDIX B: CONTINUITY OF CIRCUMFERENTIAL DISPLACEMENT

In this Appendix B, it is proved that the continuity condition of the circumferen-
tial displacement v is satis"ed exactly by the assumed mode expansion. This
continuity condition is given by
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For both of the two constraints considered at the shell ends, by using equations
(3}5), equation (B1) is transformed into
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The terms involved in equation (B2), after some calculations, are
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and, again for both the boundary conditions N
x
"0 and u"0,

NM h!lNM
x
"EhC!

2
nR

(A
1,0

(t)#A
3,0

(t)#A
5,0

(t))#
n2

8R2
(A2

1,n
(t)

#B2
1,n

(t)#A2
2,n

(t)#B2
2,n

(t))D. (B7)

Upon substituting equations (B3}B7) into equation (B2), it is found that the
left-hand side of this equation is identically zero for all x values. This proves that
the continuity condition is exactly satis"ed.


	1. INTRODUCTION
	2. NON-LINEAR MODEL OF THE SHELL
	3. HYDRODYNAMIC LOADING
	4. REDUCTION TO A FINITE-DIMENSIONAL MODEL
	5. TRAVELLING-WAVE MODE
	6. NUMERICAL RESULTS
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Figure 6
	Figure 7
	Figure 8
	Figure 9
	Figure 10
	Figure 11
	Figure 12
	Figure 13

	7. DISCUSSION AND CONCLUSIONS
	TABLE 1
	Figure 14
	Figure 15
	Figure 16

	ACKNOWLEDGMENTS
	REFERENCES
	APPENDIX A: TIME FUNCTIONS USED IN EQUATION (33)
	APPENDIX B: CONTINUITY OF CIRCUMFERENTIAL DISPLACEMENT

